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The author considers the steady-state temperature distribution in a

jet of incompressible fluid emitted in pulsed bursts from a point source,
with and without account taken of viscous dissipation. When viscous
dissipation is not taken into account, an exact solution is obtained for
the energy equation, bounded in the entire closed interval 0 < 6 =m.
When viscous dissipation is considered, the energy equation is obtained
using the introduced separation of variables.

§1. Consider the temperature distribution in an
axisymmetric jet of incompressible fluid leaving a
thin tube and entering an unbounded space filled with
the same fluid. A point heat source of intensity 2mrq,
is placed in the tube. We assume the source intensity
is such that the change in density as a function of tem-
perature can be ignored.

We write the energy equation of the jet without
allowing for viscous dissipation for the steady-state
temperature distribution:

div(vT —ayT) = Q, ! , (1)
ey

where Qg = 2796 (r) and 6(r) is the delta function.

Heat flow at the coordinate origin is not considered
because of the infinitely large quantity of heat liber-
ated. From (1) and from the Ostrogradskii-Gauss
theorem, we obtain

51‘8. (U,T—aa—T) ds = 2nq01—. (2)
or
§

G

Using Eq. (2) and allowing for the values of the jet
velocity components obtained in [1], we write the jet
temperature as

7— 4O @)

(The temperature at infinity is assumed to be zero.)
Condition (2) and the condition that T be restricted
over the entire closed interval 0 = § = 7 are used as
the boundary conditions for Eq. (1).

By writing Eq. (1) in spherical coordinates and
introducing the new variable x = cos 6, we finally ob-
tain

(1— D) y" — 2xy’ = 20 {fy)’, 4

allowing for (8) and the values for the velocity com-
ponents v and v, (the primes denote differentiation
with respect to x); here A = v/g (this quantity is the
Prandtl number);

1— x?
f= e (5)

(A= 11s a constant associated with the total momen-
tun flux of the jet).

On integrating this equation and allowing for the
boundary conditions, we obtain

p=—
( A . x)?k :
Defining the constant C,; from condition (2), we ob~
tain a final expression for the temperature
A —cosH

2__ 25
T—— qox(2x+1)( A )x

x{vrpe, [(A+ 1 (A—4r —1)—

—(A—1D* AL a4} (6)

Consider the following three cases:
a) 2A «< A. It follows from expression (6) that the
temperature is

T Go A (1+2c050)' )
2vrpc, A

For a fluid with A ~ 1, Eq. (7) becomes

T 9o (A+2cose \
Al = .
vrpe, 24 )

If (2cos 6)/A < 1 Eq. (6) becomes

T— Bt (8)
2vrpc,

i.e., for a fluid with 2X « A and low momentum (A >
> 1), the jet temperature does not depend on momen-~
tum or the polar angle 8 but is a function only of the
viscosity and radius.

b) A—1 (the momentum P — ).

It follows from (8) that T — 0. This means that the
temperature approaches the temperature at infinity
everywhere except at the flow axis 6 = 0, where the
temperature is given by

7,— B+ ©)
4vroc,

i.e., in this case the temperature at the axis under-
goes a discontinuity, remaining bounded. From (7)
and (9) it is clear that the temperature at the flow axis
increases with increase in jet momentum.

¢) A —1 (momentum approaches infinity); A — 0
(v — 0; ais bounded). It then follows from (6) that

Te= % (10)
2rapc,

For a fluid in which the viscosity approaches zero
and the thermal diffusivity is finite for an infinite jet
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momentum, the jet temperature will not depend on the
momentum or on the polar angle.

§2. If we allow for dissipation losses, the energy
equation for the steady-state temperature distribution
in a submerged jet now becomes

vyT —aAT =® +2n8(r) Lo (11)
pey

where

Y (% 0y ou
2¢, (6)6,Z A | axy

The obtained equation (11) is linear. Its general
solution is equal to the sum of the general solution of
the homogeneous equation (5) obtained in §1 and
the particular solution of Eq. (11).

Using (11) we write the particular solution as

T= ige—) . (12)

We write Eq. (11) in spherical coordinates. Using
the expressions for v, and vg from [1], together with
Eq. (4), we obtain

(1— 02" — 2%z’ — 20 fz' —dhfz+ 22 = — @, (13)

where
8v
— X

P ey

O =

(U240 2P (1= o) 4 (14 A2 —240)]
[ (A—x)°
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It is very difficult to evaluate the particular solution
of Eq. (13). We can show that for a homogeneous equa-
tion corresponding to (18), A =0 and A =1/2 (for A = 1)
are eigenvalues.

However, these two cases have no physical meaning,
since A =0 means that the viscosityis zero, while, when
A =1, the velocity components vy and vg undergo a.
discontinuity at the § =0 axis.

NOTATION

T is the temperature; v is the kinematic viscosity
of the fluid; p is the fluid density; A = v,. is the Prandil
number; a = k/pcp is the thermal diffusivity; Cp is the
specific heat of the fluid; Ve is the radial velocity com-
ponent; v, is the polar velocity component; & is a dis-
sipative function; k is the specific thermal conductivity.
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